### 5.2 Exploring Quotients of Polynomial Functions (Rational Functions)

## A Rational Functions

A rational function is a function of the form:

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomial functions.

## B Domain

The domain of a rational function is determined by the restriction

$$
Q(x) \neq 0
$$

## C y-intercept Point

The $y$-intercept point for any function $y=f(x)$ is the point $(0, f(0))$ if 0 is in the domain of the function $f$.

## D Holes

The rational function $f(x)=P(x) / Q(x)$ has a hole in its graph at $x=a$ if

$$
P(a)=0 \text { and } Q(a)=0
$$

and if the simplified formula of function $f(x)$ is defined at $x=a$.

Ex 1. Verify if the following functions are or are not rational functions.
a) $f(x)=\frac{x^{2}-x+2}{x^{2}-1}$
b) $f(x)=\frac{x}{\sqrt{x}+x^{2}}$
c) $f(x)=x^{-2}+\frac{1}{x}$

Ex 2. Find the domain of each rational function.
a) $f(x)=\frac{x^{2}-1}{x-1}$
b) $f(x)=\frac{x+1}{x^{2}-4}$
c) $f(x)=\frac{x^{2}-x}{6 x^{3}+x^{2}-2 x}$

Ex 3. Find the $y$-intercept of each rational function.
a) $f(x)=\frac{x^{2}+1}{x}$
b) $f(x)=\frac{x+3}{x^{2}-1}$

Ex 4. Sketch the graph of the following rational functions.
a) $f(x)=\frac{x^{2}}{x}$
b) $f(x)=\frac{x^{2}}{x^{4}}$
C) $f(x)=\frac{x^{2}-4}{x+2}$
d) $f(x)=\frac{x^{3}-1}{x-1}$

Ex 5. Find the zeros of the following rational functions.
a) $f(x)=\frac{x-1}{x^{2}-1}$
b) $f(x)=\frac{x^{2}-1}{x+1}$
c) $f(x)=\frac{x^{2}+1}{x-1}$

## F Vertical Asymptotes

The vertical line $x=a$ is a vertical asymptote for the graph of the function $f(x)$ if the value of the function becomes unbounded $(y=f(x) \rightarrow \pm \infty)$ as $x$ approaches $a$ from the left or from the right.

Note. If $x=a$ is a vertical asymptote for a rational function $f(x)=P(x) / Q(x)$ then (after simplification)

$$
P(a) \neq 0 \text { and } Q(a)=0
$$

Note. A vertical asymptote splits the graph of a function in branches.

## G Horizontal Asymptotes

The horizontal line $y=c$ is a horizontal asymptote for the graph of the function $f(x)$ if $y=f(x) \rightarrow a$ as $|x|$ becomes unbounded $(x \rightarrow \pm \infty)$.
Note. Some functions may have two different horizontal asymptotes (one as $x \rightarrow \infty$ and one as $x \rightarrow-\infty)$.
Note. Rational functions may have at most one horizontal asymptote.
In the case of a rational function:

$$
f(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+. . a_{1} x+a_{0}}{b_{m} x^{m}+. . b_{1} x+b_{0}}
$$

- If $P(x)$ and $Q(x)$ have the same degree ( $n=m$ ) then the equation of the horizontal asymptote is $y=\frac{a_{n}}{b_{m}}$.
- If the degree of $P(x)$ is less that the degree of $Q(x)$ then the equation of the horizontal asymptote is $y=0$.
- If the degree of $P(x)$ is greater that the degree of $Q(x)$ then the rational function does not have a horizontal asymptote.


## H Graph Sketching

Use the x-intercepts, y-intercept, symmetry, vertical and horizontal asymptote to sketch the graph of a rational function.

Ex 6. For each case, find the equation of the vertical asymptotes.
a) $f(x)=\frac{x}{x^{2}+1}$
b) $f(x)=\frac{x+3}{x^{2}-x-6}$
c) $f(x)=\frac{x^{3}-1}{x^{2}-1}$

Ex 7. For each case, find the equation of the horizontal asymptote (if exists).
a) $f(x)=\frac{x^{2}-2 x+1}{3 x^{3}-3 x+5}$
b) $f(x)=\frac{2 x^{2}+3}{x+1}$
c) $f(x)=-\frac{x^{3}+x-1}{(2 x-1)(x+1)^{2}}$

Ex 8. Sketch the graph for the following rational functions.
a) $f(x)=\frac{x-1}{x^{2}-1}$
b) $f(x)=\frac{x^{2}-1}{x^{2}-4}$

Reading: Nelson Textbook, Pages 258-261
Homework: Nelson Textbook, Page 262: \#1, 2, 3

