5.2 Exploring Quotients of Polynomial Functions (Rational Functions)

A Rational Functions	Ex 1. Verify if the following functions are or are not
A <i>rational function</i> is a function of the form: $f(x) = \frac{P(x)}{Q(x)}$	rational functions. a) $f(x) = \frac{x^2 - x + 2}{x^2 - 1}$ b) $f(x) = \frac{x}{\sqrt{x + x^2}}$
where $P(x)$ and $Q(x)$ are polynomial functions.	c) $f(x) = x^{-2} + \frac{1}{x}$
B Domain	Ex 2. Find the domain of each rational function.
The <i>domain</i> of a rational function is determined by the restriction	a) $f(x) = \frac{x^2 - 1}{x - 1}$
$Q(x) \neq 0$	b) $f(x) = \frac{x+1}{x^2 - 4}$
	c) $f(x) = \frac{x^2 - x}{6x^3 + x^2 - 2x}$
C y-intercept Point	Ex 3. Find the y-intercept of each rational function.
The <i>y</i> -intercept point for any function $y = f(x)$ is the point $(0, f(0))$ if 0 is in the domain of the function f .	a) $f(x) = \frac{x^2 + 1}{x}$ b) $f(x) = \frac{x+3}{x^2 - 1}$
D Holes	Ex 4. Sketch the graph of the following rational functions.
The rational function $f(x) = P(x)/Q(x)$ has a <i>hole</i> in its graph at $x = a$ if	a) $f(x) = \frac{x^2}{x}$
P(a) = 0 and $Q(a) = 0and if the simplified formula of function f(x) is defined$	b) $f(x) = \frac{x^2}{x^4}$
at $x = a$.	c) $f(x) = \frac{x^2 - 4}{x + 2}$
	d) $f(x) = \frac{x^3 - 1}{x - 1}$
E Zeros	Ex 5. Find the zeros of the following rational functions.
The rational function $f(x) = P(x)/Q(x)$ has a zero at $x = a$ if	a) $f(x) = \frac{x-1}{x^2-1}$
$P(a) = 0$ and $Q(a) \neq 0$	b) $f(x) = \frac{x^2 - 1}{x + 1}$
	c) $f(x) = \frac{x^2 + 1}{x - 1}$

5.2 Exploring Quotients of Polynomial Functions © 2018 Iulia & Teodoru Gugoiu - Page 1 of 2

F Vertical Asymptotes	Ex 6. For each case, find the equation of the vertical
The vertical line $x = a$ is a vertical asymptote for the	asymptotes.
graph of the function $f(x)$ if the value of the function	a) $f(x) = \frac{x}{x^2 + 1}$
becomes unbounded ($y = f(x) \rightarrow \pm \infty$) as	Λ + 1
x approaches a from the left or from the right.	
	b) $f(x) = \frac{x+3}{x^2 - x - 6}$
Note. If $x = a$ is a vertical asymptote for a rational	$x^{2} - x - 6$
function $f(x) = P(x) / Q(x)$ then (after simplification)	
	3 1
$P(a) \neq 0$ and $Q(a) = 0$	c) $f(x) = \frac{x^3 - 1}{x^2 - 1}$
Note A vertical comptete antitathe graph of a function	x^{-1}
Note. A vertical asymptote <i>splits</i> the graph of a function in <i>branches</i> .	
G Horizontal Asymptotes	Ex 7. For each case, find the equation of the horizontal asymptote (if exists).
The horizontal line $y = c$ is a <i>horizontal asymptote</i> for	
the graph of the function $f(x)$ if $y = f(x) \rightarrow a$ as	$x^2 - 2x + 1$
$ x $ becomes unbounded ($x \rightarrow \pm \infty$).	a) $f(x) = \frac{x^2 - 2x + 1}{3x^3 - 3x + 5}$
Note. Some functions may have two different	
horizontal asymptotes (one as $x \rightarrow \infty$ and one	
as $x \to -\infty$).	
Note. Rational functions may have at most one	
horizontal asymptote.	$2r^2 + 3$
In the case of a rational function: $P(x) = a x^{n} + a x + a$	b) $f(x) = \frac{2x^2 + 3}{x + 1}$
$f(x) = \frac{P(x)}{Q(x)} = \frac{a_n x^n + \dots a_1 x + a_0}{b_m x^m + \dots b_1 x + b_0}$	$\lambda \pm 1$
<i>m</i> 1 0	
• If $P(x)$ and $Q(x)$ have the same degree ($n = m$)	
then the equation of the horizontal asymptote	
is $y = \frac{a_n}{b_n}$.	
- m	
 If the degree of P(x) is less that the degree of Q(x) then the equation of the horizontal asymptote is x = 0 	$x^3 + x - 1$
Q(x) then the equation of the horizontal asymptote	c) $f(x) = -\frac{1}{(2x-1)(x+1)^2}$
13 y - 0.	
• If the degree of <i>P</i> (<i>x</i>) is <i>greater</i> that the degree of	
Q(x) then the rational function <i>does not have</i> a	
horizontal asymptote.	
H Graph Sketching	Ex 8. Sketch the graph for the following rational
	functions.
Use the x-intercepts, y-intercept, symmetry, vertical and horizontal asymptote to sketch the graph of a	a) $f(x) = \frac{x-1}{x^2-1}$
rational function.	x^2-1
	$x^2 - 1$
	b) $f(x) = \frac{x^2 - 1}{x^2 - 4}$
Reading: Nelson Textbook, Pages 258-261	

Reading: Nelson Textbook, Pages 258-261 **Homework**: Nelson Textbook, Page 262: #1, 2, 3